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Abstract

In this paper, we develop a new substructural logic that
can encode invariants necessary for reasoning about hier-
archical storage. We show how the logic can be used to
describe the layout of bits in a memory word, the layout
of memory words in a region, the layout of regions in an
address space, or even the layout of address spaces in a
multiprocessing environment. We provide a semantics for
our formulas and then apply the semantics and logic to the
task of developing a type system for Mini-KAM, a simpli-
fied version of the abstract machine used in the ML Kit with
regions.

1 Introduction

The problem of establishing that programs allocate, ini-
tialize, use and deallocate memory safely has plagued pro-
gramming language researchers for decades. Moreover, the
relatively recent development of proof-carrying code [14,
15] and typed assembly language [13] and the widescale
deployment of low-level safe virtual machines [10, 25] has
provided still more incentive to study the wide variety of
invariants that can be used to ensure safe memory manage-
ment.

One of the most promising trends in this area is the use of
substructural logics rather than conventional classical logics
to describe the state of a computation [23, 8]. The expres-
sive connectives of a substructural logic are able to cap-
ture the spatial orientation of a data structure in a concise
fashion without having to rely upon the series of auxiliary
predicates needed by conventional logics. For instance, Ish-
tiaq, O’Hearn and Reynolds have used the multiplicatives
of bunched logic to capturespatial separation properties in
data structures. Their formula(� �→ 3) ∗ (�′ �→ 3) de-
scribes twoseparate locations� and�′ that both contain the
integer 3. Similar information can be captured in a classi-
cal formula, but only at the expense of having to introduce
additional predicates that represent inequality information

explicitly: (� �→ 3) ∧ (�′ �→ 3) ∧ (� �= �′). As the complex-
ity of the spatial properties increases, the classical formulas
become less and less wieldy. For example, as the number
of locations in a formula grows linearly, the number of in-
equalities needed to specify that all locations are disjoint
grows quadratically.

In this paper, we develop a new substructural logic that
provides simple but general connectives for reasoning about
hierarchical storage. We show how the logic can be used
to describe the layout of bits in a memory word, the lay-
out of memory words in aregion [27], and the layout of
regions in an address space. We then combine connectives
that describe these hierarchical relationships with other sub-
structural formulas that describe separation and adjacency
of memory locations. We provide a semantics for our for-
mulas and apply the semantics and logic to the task of devel-
oping a type system for Mini-KAM, a simplified version of
the abstract machine used in the ML Kit with regions [26].

2 Preliminary Development

We develop our logic from first principles following the
methodology set out by Martin L¨of [11] and Frank Pfen-
ning [18, 19]. The details of our logic were directly inspired
by Cardelli and Gordon’s ambient logic [3], and O’Hearn
and Pym’s logic of bunched implications (BI) [16].

We begin by considering not onlywhether a formula is
true but alsowhere it is true. Hence the primary judgmentJ
of our logic has the formF @ p whereF is a logical formula
andp is a place where that formula may or may not be true.
For the purposes of the current paper, places are nodes in
an edge-labeled tree, as in the ambient logic. We use the
metavariablen to range over edge names and we use paths
from the root (∗) to refer to places.

Path / Place p : : = ∗ | p.n

With these primitive concepts in hand, we may proceed
to develop a logic capable of expressing three main spatial
properties:

• Containment of one place in another.



• Separation or disjointedness of one object from an-
other.

• Adjacency of one object to another.

Containment. We say that one placep contains another
placep′ whenp′ = p.n for some edgen. Our logic internal-
izes the notion of containment with a formulan[F ], which
is defined by the following rules.

� F @ p.n

� n[F ] @ p
n[ ]I

� n[F ] @ p

� F @ p.n
n[ ]E

As a preliminary check on the consistency of these rules,
we note that the elimination rule is locally sound and com-
plete with respect to the introduction rule. Local soundness
ensures that the elimination rules for a connective are not
too strong: it is impossible to gain extra information simply
by introducing the connective and then immediately elimi-
nating it. Local soundness of the above rules is witnessed
by the following local reduction (⇒r).

D
� F @ p.n

� n[F ] @ p
n[ ]I

� F @ p.n
n[ ]E

⇒r

D
� F @ p.n

Local completeness ensures that the elimination rules are
not too weak: given an arbitrary proof of the connective, we
can recover enough information through eliminations to be
able to reintroduce the connective. Local completeness of
the rules above is witnessed by the following local expan-
sion (⇒e).

E
� n[F ] @ p ⇒e

E
� n[F ] @ p

� F @ p.n
n[ ]E

� n[F ] @ p
n[ ]I

To illustrate the use of this simple connective, we assume
the presence of a collection of logical predicatesτ , which
can be interpreted as saying that “a value with typeτ is
here.” For example, the formula�[int] says “an integer is
in the location�.” The judgmentρ[r[bool]] @ ∗ says that
“at the root, the processρ contains a regionr that contains
a boolean.”

Separation. Separation is most easily defined by extend-
ing our basic judgments to depend upon linear contexts with
the following form.

Contexts ∆ : := · | (u:J) | ∆1, ∆2

We define contexts as a tree of hypotheses rather than a
more conventional list of hypotheses in anticipation of fur-
ther extensions for reasoning about adjacency. The nodes in
these trees are labeled with the (linear) separator “,”. The
leaves of these trees are either empty (denoted by “·”) or a

single judgment labeled with a variableu.1 We treat these
trees of hypotheses as equivalent up to associativity and
commutativity of the “,” separator and regard “·” as the left
and right identity for “,”. However, these contexts are not
subject to contraction or weakening.

Our new hypothetical judgments obey the following lin-
ear substitution principle, whereΓ is a context containing
a single hole andΓ(∆) is notation for filling the hole inΓ
with the context∆. We considerΓ(∆) to be undefined if
Γ and∆ have any variablesu in common. In our final log-
ical system, this substitution principle can be proven as a
lemma.

Principle 1 (Substitution)
If ∆ � F @ p and Γ(u:F @ p) � F ′ @ p′ then Γ(∆) �
F ′ @ p′.

To internalize the notion of separation, we introduce a
multiplicative conjunctionF1 ⊗ F2 (pronouncedF1 tensor
F2).

∆1 � F1 @ p ∆2 � F2 @ p

∆1,∆2 � (F1 ⊗ F2) @ p
⊗I

∆ � (F1 ⊗ F2) @ p Γ(u1:F1 @ p , u2:F2 @ p) � F @ p

Γ(∆) � F @ p
⊗E

The only thing to distinguish this connective from BI’s
multiplicative conjunction is the presence of the pathp in
our judgments. Since the path is everywhere the same, our
multiplicative combines two separate objects in a particular
place into a pair of objects in that place. As before, it is easy
to verify that the elimination is locally sound and complete
with respect to the introduction.

As an example of our new connective, consider the for-
mula r[�[int] ⊗ �′[int]], which asserts that “regionr con-
tains two separate locations� and�′ that both contain inte-
gers”. The formular[�[int]] ⊗ r[�′[int]] makes the same
assertion.

Adjacency. The last main concept in our logic is adja-
cency. To model adjacency at the level of judgments, we
extend our hypothetical context one more time with an ad-
jacency separator “;”.

Contexts ∆ : : = · · · | ∆1; ∆2

We extend the equivalence relation on contexts so that “;”
is associative, has the empty context “·” as its identity but,
unlike “,” is not commutative. Neither separator distributes
over the other. In summary, the equivalence relation on con-
texts is the reflexive, symmetric and transitive closure of the
following axioms.

1We label hypotheses with distinct variablesu to facilitate the proof of
the substitution principle (Principle 1).



1. · ,∆ ≡ ∆ 4. (∆1,∆2),∆3 ≡ ∆1, (∆2,∆3)
2. · ;∆ ≡ ∆ 5. (∆1;∆2);∆3 ≡ ∆1; (∆2;∆3)
3. ∆; · ≡ ∆ 6. ∆1,∆2 ≡ ∆2,∆1

7. Γ(∆) ≡ Γ(∆′) if ∆ ≡ ∆′

We internalize adjacency with an ordered conjunction
(calledfuse).

∆1 � F1 @ p ∆2 � F2 @ p

∆1;∆2 � (F1 ◦ F2) @ p
◦I

∆ � (F1 ◦ F2)@ p Γ(u1:F1 @ p ; u2:F2 @ p) � F @ p

Γ(∆) � F @ p
◦E

Our ordered conjunction allows us to specify a sequence
of objects lined up one next to the other. For example, we
can specify a sequence of 32 bits in a word at location� as
�[0 [bit]◦1 [bit]◦· · ·◦31 [bit]] where0 through31 are the
names of the bit locations; or we can specify three objects in
sequence on the top of the stack asstack [l1[int]◦l2[bool]◦
l3[int]◦ tail ] where the formulatail describes the tail of the
stack.

Adjacent locations are not only next to one another they
are also separate from one another. Formally, adjacency
and separation are related by the following principle, which
states that we may view a proof ofΓ(∆1,∆2) � F @ p as a
proof ofΓ(∆1; ∆2) � F @ p.2

Principle 2 (Disorder)
If Γ(∆1,∆2) � F @ p thenΓ(∆1; ∆2) � F @ p.

The ordered and linear conjunctions (◦ and⊗, respec-
tively) share a single identity1 defined by familiar inference
rules.

· � 1 @ p
1I

∆ � 1 @ p Γ(·) � F @ p

Γ(∆) � F @ p
1E

Quantifiers and Other Connectives. Our logic includes
formulae for universal and existential quantification that
have the form∀b.F and∃b.F , respectively. The bindings
in quantification formulae describe the sort (integerI, path
P, typeT, formulaF, or nameN) of the bound variable.

Bindings b : : = i:I | p:P | α:T | φ:F | n:N

To support universal and existential quantification we ex-
tend the judgments of our logic to additionally depend on a
variable contextΘ. The final form of the basic judgment of
our logic isΘ ‖ ∆ � F @ p whereΘ describes the variables
that appear free in∆, F , or p.

Variable Contexts Θ : := · | Θ, b

2Unlike our Substitution Principle, the Disorder Principle cannot be
proven as a lemma in our final system unless we add the corresponding
structural inference rule. We choose not to add an explicit structural rule,
but implicitly include one sort of proof for another wherever necessary in a
derivation, following a similar idea in Pfenning and Davies’ development
of modal logic [19].

Rules for the quantification connectives are given in Fig-
ure 1, along with rules for additive conjunction (&) and its
unit (
), and additive disjunction (⊕) and its unit (0). Our
logic extends readily to handle linear, left-ordered and right-
ordered implications (�,�,�) though we do not describe
these here in the interest of space.

Our latest hypothetical judgments obey all the principles
described thus far as well as the following variable substi-
tution principle. We use the metavariableK to range over
sorts,x to range over variables in general anda to range
over objects of each different sort.

Principle 3 (Variable Substitution)
If Θ, x:K ‖ ∆ � F @ p then for alla∈K, Θ ‖ ∆[a/x] �
F [a/x] @ p[a/x].

Summary of Logical Formulae and Deduction Rules
The syntax of formulae in our logic is summarized below.
The simplest formulae are predicatesq. Thus far we have
only encountered predicates of the formτ , which can be
interpreted as “a value of typeτ is here.” Additional predi-
cates will be introduced in Section 3.2.

Predicates q : : = τ | · · ·
Formulae F : : = q | n[F ] | 1 | F1 ⊗ F2 | F1 ◦ F2 |

� | F1 &F2 | 0 | F1 ⊕ F2 |
φ | ∀b.F | ∃b.F

The natural deduction rules of our logic are collected in
Figure 1.

3 Store Semantics

In this section, we describe a model for our logic based
on hierarchical stores.

3.1 Stores

We assume the existence of an abstract set of valuesV al.
A store is a partial map from pathsp to valuesv.

Stores s ∈ Path ⇀ V al

Values will be given types via a judgment of the form
�Ψ v : τ , whereΨ is an abstract type assignment.

In order to discuss adjacent places, we assume the ex-
istence of a partial functionsucc : Path ⇀ Path, which
maps a pathp to the path that immediately follows it. We
write adj(p, p′) whenp′ = succ(p). We usep + i andp〈i〉
as syntactic sugar forsucci(p) andp− i for the pathp′ such
that p = succi(p′). We define the relation≤ in terms of
succ as follows:p ≤ p′ iff there exists a natural numberi
such thatsucci(p) = p′. We say that a setP ⊆ Path is or-
dered if and only if it can be organized in a total order given
by the relation≤. Otherwise we say thatP is unordered.

We use the following notation to manipulate stores.



Θ ‖ ∆ � F @ p

Hypothesis

Θ ‖ u:F @ p � F @ p
Hyp (u)

Containment

Θ ‖ ∆ � F @ p.n

Θ ‖ ∆ � n[F ] @ p
n[ ]I

Θ ‖ ∆ � n[F ] @ p

Θ ‖ ∆ � F @ p.n
n[ ]E

Linear and Ordered Unit

Θ ‖ · � 1 @ p
1I

Θ ‖ ∆ � 1 @ p Θ ‖ Γ(·) � F @ p

Θ ‖ Γ(∆) � F @ p
1E

Linear Conjunction

Θ ‖ ∆1 � F1 @ p Θ ‖ ∆2 � F2 @ p

Θ ‖ ∆1,∆2 � (F1 ⊗ F2)@ p
⊗I

Θ ‖ ∆ � (F1 ⊗ F2)@ p Θ ‖ Γ(u1:F1 @ p, u2:F2 @ p) � F @ p

Θ ‖ Γ(∆) � F @ p
⊗E

Ordered Conjunction

Θ ‖ ∆1 � F1 @ p Θ ‖ ∆2 � F2 @ p

Θ ‖ ∆1;∆2 � (F1 ◦ F2)@ p
◦I

Θ ‖ ∆ � (F1 ◦ F2)@ p Θ ‖ Γ(u1:F1 @ p;u2:F2 @ p) � F @ p

Θ ‖ Γ(∆) � F @ p
◦E

Additive Conjunction and Unit

Θ ‖ ∆ � �@ p
�I

Θ ‖ ∆ � F1 @ p Θ ‖ ∆ � F2 @ p

Θ ‖ ∆ � (F1 & F2) @ p
&I

Θ ‖ ∆ � (F1 & F2)@ p

Θ ‖ ∆ � F1 @ p
&E1

Θ ‖ ∆ � (F1 &F2)@ p

Θ ‖ ∆ � F2 @ p
&E2

Additive Disjunction and Unit

Θ ‖ ∆ � 0 @ p

Θ ‖ ∆ � F @ p
0E

Θ ‖ ∆ � F1 @ p

Θ ‖ ∆ � (F1 ⊕ F2) @ p
⊕I1

Θ ‖ ∆ � F2 @ p

Θ ‖ ∆ � (F1 ⊕ F2) @ p
⊕I2

Θ ‖ ∆ � (F1 ⊕ F2)@ p
Θ ‖ Γ(u1:F1 @ p) � J Θ ‖ Γ(u2:F2 @ p) � J

Θ ‖ Γ(∆) � J
⊕E

Universal Quantification

Θ, x:K ‖ ∆ � F @ p

Θ ‖ ∆ � (∀x:K.F ) @ p
∀I

Θ ‖ ∆ � (∀x:K.F ) @ p a ∈ K

Θ ‖ ∆ � F [a/x]@ p
∀E

Existential Quantification

Θ ‖ ∆ � F [a/x]@ p a ∈ K

Θ ‖ ∆ � (∃x:K.F ) @ p
∃I

Θ ‖ ∆ � (∃x:K.F ) @ p Θ, x:K ‖ Γ(u:F @ p) � J

Θ ‖ Γ(∆) � J
∃E

Figure 1. Natural Deduction Rules

• dom(s) denotes the domain of the stores

• s(p) denotes the value stored at pathp

• s [p := v] denotes a stores′ in which p maps tov but
is otherwise the same ass. If p �∈ dom(s) thens′ =
s ∪ {p �→ v}

• Given an ordered set of pathsX ⊆ Path, pXq is the
greatest member (thesupremum) of the set andxXy is
the least member (theinfimum) of the set according to
the relation≤. Given any unordered setY ⊆ Path,
pY q andxY y are undefined.p∅q andx∅y are also un-
defined.

• s1#s2 indicates that the storess1 ands2 have disjoint
domains

• s1 � s2 denotes the union of disjoint stores; if the do-
mains of the two stores are not disjoint then this oper-
ation is undefined.

• s1 � s2 denotes the union of disjoint
stores with the additional caveat that either

adj(pdom(s1)q, xdom(s2)y) or one of s1 or s2
is empty.

3.2 Semantics of Judgments

We use judgments to describe stores and writes �Ψ

F @ p when the judgmentF @ p describes the stores. The
most basic formulae are the predicatesτ , more←, and
more→. The judgmentτ @ p describes a store with a sin-
gle placep that holds a value of typeτ . The judgments
more← @ p andmore→ @ p describe an infinite sequence of
adjacent places to the left (and right, respectively) of some
place contained inp. When we develop a type system for
Mini-KAM in section 4, we will usemore← to indicate that
the stack may be grown to the left, andmore→ to indicate
that heap regions may be grown to the right.

The formulan[F ] @ p describes a stores if and only if s
may be described by the formulaF @ p.n. To illustrate the



semantics of the containment connective we consider the
stores = {∗.n1.n2 �→ 5}. The judgment(n1[n2[int]])@ ∗
describess, as do the judgments(n2[int])@ ∗ .n1 and
int@ ∗ .n1.n2.

The semantics of the multiplicative conjunctionF1 ⊗ F2
follows from the work of Ishtiaq and O’Hearn [8]: A store
s can be described by(F1 ⊗ F2)@ p if and only if there
exist s1, s2, such thats1 �Ψ F1 @ p and s2 �Ψ F2 @ p
and s = s1 � s2. To get accustomed to some of the
properties of tensor and to contrast it with fuse, we will
reason about the following stores which contain locations
in the set{∗.m.ni | 0 ≤ i ≤ k} where each path in
this set is adjacent to the next in sequence (i.e., for alli,
adj(∗.m.ni, ∗.m.ni+1)).

Store Domain Describing Judgment
s1 {∗.m.n1, ∗.m.n3} F1 @ ∗
s2 {∗.m.n4, ∗.m.n6} F2 @ ∗
s3 {∗.m.n2} F3 @ ∗
s4 ∅ F4 @ ∗
s5 {∗.m.n7} F5 @ ∗.m
s6 {∗.m.n6} F6 @ ∗.m

The stores = s1 ∪ s2 ∪ s3 can be described by the judg-
ment((F1 ⊗ F2) ⊗ F3)@ ∗ sinces can be broken into two
disjoint parts,s1 ∪ s2 and s3, which satisfy the subfor-
mulae(F1 ⊗ F2)@ ∗ andF3 @ ∗ respectively. The store
s also satisfies the judgments(F1 ⊗ (F2 ⊗ F3))@ ∗ and
(F3 ⊗ (F2 ⊗ F1))@ ∗ since it is defined in terms of the as-
sociative and commutative disjoint union operator.

For fuse, we haves �Ψ (F1 ◦ F2)@ p if and only if
s can be divided into twoadjacent parts,s1 ands2 such
that s1 �Ψ F1 @ p and s2 �Ψ F2 @ p. More formally,
we requires = s1 � s2. Now consider our example from
above. The stores1 ∪ s2 may be described using the judg-
ment(F1 ◦ F2)@ ∗ since the supremum ofs1 is adjacent to
the infimum ofs2. This same store cannot be described by
(F2 ◦ F1)@ ∗ — fuse is not generally commutative. On the
other hand,s1 can be described by either(F1 ◦ F4)@ ∗ or
(F4 ◦F1)@ ∗ sinces1 = s1�∅ = ∅ �s1. Since neither the
supremum nor the infimum ofs3 is adjacent to the infimum
or supremum, respectively, ofs1 or s2 we cannot readily
use fuse to describe the relationship between these memo-
ries. Finally, the supremum ofs2 is adjacent to the infimum
of s5 ands2 ∪ s5 can be described by(F2 ◦ m[F5])@ ∗.

To see how fuse interacts with the containment connec-
tive, consider the storess5 ands6. The supremum ofs6
is adjacent to the infimum ofs5 so it follows that the store
s6 ∪ s5 can be described by(F6 ◦ F5)@ ∗ .m. Moreover,
this same stores6 ∪ s5 can be described bym[F6 ◦ F5] @ ∗
and also by(m[F6] ◦ m[F5])@ ∗. The interaction between
tensor and containment is analogous:s6 ∪ s5 satisfies both
m[F5 ⊗ F6] @ ∗ and(m[F5] ⊗ m[F6])@ ∗. The fact that
the same store satisfies both these judgments is a point of
departure from the ambient logic [3].

s �Ψ F @ p if and only if

• F = τ anddom(s) = {p} ands(p) = v and�Ψ v : τ

• F = more← and there exists a non-empty setX such that
dom(s) = {p.x | x∈X} and∀x∈X. ∃y∈dom(s). adj(y, p.x)

• F = more→ and there exists a non-empty setX such that
dom(s) = {p.x | x∈X} and∀x∈X. ∃y∈dom(s). adj(p.x, y)

• F = n[F ′] ands �Ψ F ′ @ p.n

• F = 1 anddom(s) = ∅
• F = F1 ⊗ F2 and there exists1, s2, such thats = s1 � s2

ands1 �
Ψ F1 @ p ands2 �

Ψ F2 @ p

• F = F1 ◦ F2 and there exists1, s2, such thats = s1 � s2

ands1 �
Ψ F1 @ p ands2 �

Ψ F2 @ p

• F = � (and no other conditions need be satisfied)

• F = F1 & F2 ands �Ψ F1 @ p ands �Ψ F2 @ p

• F = 0 and false (this formula can never be satisfied)

• F = F1 ⊕ F2 and either

1. s �Ψ F1 @ p, or

2. s �Ψ F2 @ p.

• F = ∀x:K.F ′ ands �Ψ F ′[a/x] @ p for all a∈K

• F = ∃x:K.F ′ and there exists somea∈K such that
s �Ψ F ′[a/x] @ p

Figure 2. Semantics of Judgments

The semantics for the rest of the formulae are collected
in Figure 2. In the semantics of quantifiers, we use the no-
tationX [a/b] to denote capture-avoiding substitution ofa
for the variable inb in the objectX . The objects substituted
for variables must have the correct sort (integer, path, type,
formula, or name) or else the substitution is undefined.

3.3 Semantics of Contexts & Soundness

Like individual formulae, contexts can describe stores.
The semantics of contexts appears below. Notice that the
semantics of the ordered separator “;” mirrors the seman-
tics of fuse whereas the semantics of the linear separator “,”
mirrors the semantics of tensor.
s �Ψ

C ∆ if and only if

• ∆ = · anddom(s) = ∅
• ∆ = u:F @ p ands �Ψ F @ p

• ∆ = ∆1,∆2 ands = s1 � s2 ands1 �
Ψ
C ∆1 ands2 �

Ψ
C ∆2

• ∆ = ∆1;∆2 ands = s1 � s2 ands1 �
Ψ
C ∆1 ands2 �

Ψ
C ∆2

We have proven the following lemma which states that
deduction is sound with respect to our semantic model. The
proof follows by induction on the derivation that· ‖ ∆ �
F @ p.

Lemma 4 (Soundness of Logical Deduction)
If s �Ψ

C ∆ and· ‖ ∆ � F @ p, thens �Ψ F @ p.



4 Mini-KAM

In this section, we present the syntax and the static and
dynamic semantics of Mini-KAM, a simplified and ideal-
ized version of the Kit Abstract Machine [6] used in the ML
Kit with regions [26]. Mini-KAM is a stack-based machine
that consists of three registers: two general-purpose regis-
tersacc1 andacc2, and a stack pointersp that points to the
last allocated cell at the top of the stack. In addition to the
stack and registers, Mini-KAM has a set ofinfinite regions.
Infinite regions are so named to distinguish them fromfinite
regions [26]. The latter are regions whose maximum size is
knowna priori, which means that they can be allocated on
the stack.

We model Mini-KAM using the hierarchical stores we
introduced in Section 3.1. Figure 3 illustrates the store hier-
archy in Mini-KAM. The three registers are “contained” in
the root (∗), as is the stack (namedstack ) and a set of (in-
finite) regionsri. The stack in Mini-KAM grows with de-
creasing addresses and contains an infinite set of locations
ni that correspond to memory cells. The regions, on the
other hand, contain an infinite set of increasing locations,
starting with the distinguished location namestart — i.e.,
∗.r.start is the path to the first location in regionr.

By comparison, the KAM has an infinite number of
fixed-size pages each of which is contained in either the
free list or in an allocated region. We could easily model
the KAM by adding an extra level to our store hierarchy,
such that regions contain pages which in turn contain lo-
cations, and also maintain a free list contained in root (∗)
that contains similar pages. The KAM also has a notion of
region pointers which are special in that the two least sig-
nificant bits are used to indicate whether the region is finite
or infinite, and whether allocation should be performed at
the top or the bottom (overwrite mode) of the region. The
remaining 30 bits store the actual pointer to the region. We
could imagine yet another level in our store hierarchy, such
that locations each contain 32 bits as we sketched out in
an example in Section 2. We have chosen to abstract away
some of these details in this short paper.

acc1 acc2 stack r1 rn

...  o nk [_] o   ...  o  n1 [
_] 

o  n0 [_]

*

sp ...

start [_]  o  n0[_] o  ...  o  nm[_] o  ... 

Figure 3. Mini-KAM Store Hierarchy

4.1 Syntax

We will be reasoning about several different sorts of
valuesv including integersi ∈ Int, code locationsc ∈
Codeloc, which contain executable code, places or paths
p ∈ Path, and two special valueslive anddead that are
useful for reasoning about whether or not an existing region
is safe to access. Therefore, the set of valuesV al (which
was left abstract in Section 3.1) may be defined as follows.

V al = Int ∪ Path ∪ Codeloc ∪ {live} ∪ {dead}

There are four main components of a program. A code re-
gion C is a finite partial map from code values to blocks
of codeB. Each block is a sequence of instructionsι ter-
minated by a jump instruction. Finally, the operands that
appear in instructions are simply valuesv.

The stateΣ of the Mini-KAM is a 3-tuple containing a
code regionC, a stores, and the block of codeB that is
currently being executed. The store hierarchy must match
that shown in Figure 3.

Values v : : = i | p | c | live | dead
Instructions ι : : = immed1 (v) | immed2 (v) | swap |

add | sub | push | pop |
selectStack (i) | storeStack (i) |
select (i) | store (i) |
letRgnFin (i) | letRgnInf |
endRgnInf | alloc (i)

Blocks B : : = jmp | ι;B
Code Region C : : = · | C, c �→ B
Machine State Σ : := (C, s, B)

4.2 Operational Semantics

We define execution of our abstract machine using a
small-step operational semanticsΣ �−→ Σ′. We briefly de-
scribe the instructions here. Readers desiring further de-
tails should consult the formal operational semantics given
in Figure 4.

• immed1 andimmed2 load the operandv into the reg-
istersacc1 andacc2 respectively, whileswap swaps
the contents of these two registers.

• add andsub assume thatacc1 andacc2 contain inte-
ger operands and place the result inacc1.

• push stores the value inacc1 at the top of the stack
and increments the stack pointer, whilepop pops the
value at the top of the stack and places it inacc1.

• selectStack(i) loads the contents ofptop + i
(whereptop is the top of the stack) intoacc1, while
storeStack (i) stores the value inacc1 atptop + i.

• select (i) loads the contents ofp + i (wherep is the
address inacc1) into acc1, while store (i) stores the
value inacc1 atp + i.



(C, s, B) �−→ Σ where
If B = thenΣ =
immed1 (v);B′ (C, s [∗.acc1 := v], B′)
immed2 (v);B′ (C, s [∗.acc2 := v], B′)
swap ;B′ (C, s [∗.acc1 := s(∗.acc2)] [∗.acc2 := s(∗.acc1)], B′)
add ;B′ (C, s [∗.acc1 := s(∗.acc1) + s(∗.acc2)], B′)
sub ;B′ (C, s [∗.acc1 := s(∗.acc1) − s(∗.acc2)], B′)
push ;B′ (C, s [p := s(∗.acc1)] [∗.sp := p], B′) wherep = s(∗.sp) − 1
pop ;B′ (C, s [∗.acc1 := s(s(∗.sp))] [∗.sp := s(∗.sp) + 1], B′)
selectStack (i);B′ (C, s [∗.acc1 := s(s(∗.sp) + i)], B′)
storeStack (i); B′ (C, s [p := s(∗.acc1)], B′) wherep = s(∗.sp) + i

select (i);B′ (C, s [∗.acc1 := s(p)], B′) wherep = s(∗.acc1) + i and∃r, n. p = ∗.r.n ∧ s(∗.r) = live
store (i);B′ (C, s [p := s(∗.acc2)], B′) wherep = s(∗.acc1) + i and∃r, n. p = ∗.r.n ∧ s(∗.r) = live
letRgnFin (i);B′ (C, s [∗.sp := s(∗.sp) − i] [∗.acc1 := s(∗.sp) − i], B′)
letRgnInf ;B′ (C, s [∗.r :=live] [∗.r.start + j :=0] [p1 := ∗.r.start ] [p2 := ∗.r.start ] [∗.sp := s(∗.sp) − 2], B′) for all j ≥ 0

wherep1 = s(∗.sp) − 1, p2 = s(∗.sp) − 2, ∗.r /∈ dom(s) and∀n. ∗ .r.n /∈ dom(s)
endRgnInf ;B′ (C, s [∗.r :=dead] [∗.sp :=s(∗.sp) + 2], B′) wheres(s(∗.sp) + 1) = ∗.r.start
alloc (i);B′ (C, s [p := s(p) + i] [∗.acc1 := s(p) + 1], B′) wherep = s(∗.acc1) and∃r, n. s(p) = ∗.r.n ∧ s(∗.r) = live
jmp (C, s,B′′) whereC(s(∗.acc1)) = B′′

Figure 4. Operational Semantics

• letRgnFin (i) allocates a finite region of sizei on the
stack; it simply decrements the stack pointer byi and
places a pointer to the beginning of the finite region in
acc1.

• letRgnInf andendRgnInf allocate and free infinite
regions, whilealloc (i) allocatesi consecutive mem-
ory locations in an existing infinite region. We shall
describe these instructions in detail when we discuss
their typing rules in Section 4.3.

4.3 Types and Typing Rules

In this section, we describe the typing rules for Mini-
KAM, with an emphasis on how we use the store logic to
describe the state of the abstract machine. Formal typing
rules appear in Figures 5 and 6.

We give integers, paths,live anddead singleton types
which identify them exactly. For example, the integeri may
be given the typeS(i). Code locations are given code types
as described by a code context. These code types have the
form (F @ p) → 0, whereF @ p is a judgment that de-
scribes requirements that must be satisfied by the state of
the abstract machine before it is safe to jump to the code.
Code can only “return” by explicitly jumping to a continu-
ation (a return address) that it has been passed as an argu-
ment and therefore our code types do not have proper return
types. Abstract typesα arise through existential or univer-
sal quantification in formulae. The syntax of types is as
follows.

Types τ : : = α | S(v) | (F @ p) → 0
Code Contexts Ψ : := · | Ψ, c : (F @ p) → 0

The type system for Mini-KAM is defined by the following
judgments.

�Ψ v : τ Valuev has typeτ
Θ ‖ J �Ψ ι : J ′ Instructionι requires a contextΘ ‖ J and

yieldsJ′

Θ ‖ J �Ψ B ok Block B is well-formed in contextΘ ‖ J
� C : Ψ Code regionC has typeΨ
� Σ ok StateΣ is well-formed

The static semantics is given in Figures 5 and 6. Once
again, although judgments for operands, instructions and
blocks are formally parameterized byΨ, we normally omit
this annotation.

We use abbreviations for the following common for-
mulae: ∃i:I.S(i) is abbreviated int; ∃α:T. n[α] is
abbreviatedn[ ]; ∃n:N.∃α:T. n[α]) is abbreviatedns;
m1[m2 · · · [mk[F ]] · · ·] is abbreviatedm1.m2. · · · .mk[F ].

Definitions (Lookup and Update)
Our typing rules make extensive use of an operation tolook
up the formula describing the contents at a place offset by an
index (p〈i〉) in a judgmentF @ p. To facilitate this operation
we use the notationJ(p〈i〉) which is defined as follows.

J(p.n〈i〉) = Fi if · ‖ J � (�⊗(n[F0]◦n1[F1]◦· · ·◦ni[Fi])) @ p

Let us take a closer look at the above definition. Assume
thats is the subset of the store that satisfies(n[F0]◦n1[F1]◦
· · ·◦ni[Fi])@ p. Notice that in the above definition, the for-
mula
 “consumes” everything in the store that is not ins.
This allows us to ignore parts of the store that are not rel-
evant to the information we want to look up. For instance,



�Ψ v : τ

� v : S(v)
(v /∈ Codeloc)

Ψ(c) = (F @ p) → 0
� c : (F @ p) → 0

(code)

Θ ‖ F @ p � B ok

J(∗.acc1) = (J ′) → 0 Θ ‖ J � J ′

Θ ‖ J � jmp ok
(b-jmp)

Θ ‖ J � ι :J ′ Θ ‖ J ′ � B ok

Θ ‖ J � ι;B ok
(b-instr)

Θ ‖ (n[more← ◦ F1] ⊗ F )@ p � B ok
Θ ‖ (n[more← ◦ ns ◦ F1] ⊗ F )@ p � B ok

(b-stackcut)

Θ ‖ (n[more← ◦ ns ◦ F1] ⊗ F )@ p � B ok
Θ ‖ (n[more← ◦ F1] ⊗ F )@ p � B ok

(b-stackgrow)

Θ ‖ (n[F1 ◦ ns ◦ more→] ⊗ F ) @ p � B ok

Θ ‖ (n[F1 ◦ more→] ⊗ F )@ p � B ok
(b-regiongrow)

Θ, b ‖ F @ p � B ok
Θ ‖ ∃b.F @ p � B ok

(b-unpack)

Θ ‖ J � J ′ Θ ‖ J ′ � B ok

Θ ‖ J � B ok
(b-weaken)

� C : Ψ
dom(C) = dom(Ψ)

∀c ∈ dom(C). Ψ(c) = (F @ p) → 0
implies · ‖ F @ p �Ψ C(c) ok

� C : Ψ
(codergn)

� Σ ok

� C : Ψ s �Ψ F @ ∗ · ‖ F @ ∗ �Ψ B ok
� (C, s, B) ok

(state)

Figure 5. Static Semantics (except instrs.)

any objects immediately to the right ofni are simply con-
sumed by
. We shall use the abbreviationJ(p) for the
lookupJ(p〈0〉).

We update the type of a pathp〈i〉 in a judgmentJ using
the notationJ [p〈i〉 := τ ] which is defined as follows.

J [∗.p.n〈i〉 := τ ] =
(F1 ⊗ (F2 ◦ p[n[τ0] ◦ n1[τ1] ◦ · · · ◦ ni[τ ]] ◦ F3))@ ∗

if · ‖ J � (F1 ⊗ (F2 ◦ p[n[τ0] ◦ n1[τ1] ◦ · · · ◦ ni[τi]] ◦ F3))@ ∗
wherep is a sequence of names.

State Typing. The rule for typing code is the standard rule
for a mutually recursive set of functions. The rule for typ-
ing an overall machine state requires that we type check our
programC and then check the code we are currently ex-
ecuting (B) under the assumptionJ , which describes the
current stores.

Block Typing. The basic block typing rules areb-instr,
which processes one instruction in a block and then the rest
of the block, andb-jmp which types the jump instruction
that ends a block.

Block typing also includes rules to extend our view of
the stack (b-stackgrow), retract our view of the stack (b-
stackcut) or extend our view of a region (b-regiongrow).
Typically, when we wish to push more data on the stack,
we will first use theb-stackgrow rule (as many times as nec-
essary), and thenpush data onto the stack. Similarly, to
allocatei new cells in an infinite region, typically we would
first use theb-regiongrow rule i times and then perform an
alloc (i). To pop the stack, we reverse the order, using
pop one or more times, followed by as many uses of the
b-stackcut rule.

Instruction Typing. Instruction typing is performed in a
context in which the free variables are described byΘ and
the current state of the store is described by the input judge-
mentJ . An instruction will generally transform the state of
the store and result in a new state described by the judge-
mentJ ′. For instance, if the initial state is described by
J and we can verify that� v : τ , then the instruction
immed1 (v) transforms the store so that the new state is de-
scribed byJ [∗.acc1 := τ ]. The rule for typingimmed2 is
identical. The rule for swapping the contents ofacc1 and
acc2 makes use of our judgment lookup operation. In gen-
eral, the lookup operationJ(p) = F suffices to verify that
the pathp exists in the store andF @ p describes some por-
tion of the store. The rules for integer addition and subtrac-
tion are similar to that forswap .

To type check thepush instruction, if sp points to
the locationn in stack and we can verify that somepor-
tion of the current store can be described by the judgment
(n′[ ]◦n[ ])@ ∗.stack , then after the stack pointer has been
decremented it should point to∗.stack .n′. We can come to
this conclusion even though we do not know exactly which
locationsn andn′ we’re dealing with. The fuse operator
allows us to conclude thatadj(∗.stack .n′, ∗.stack .n). In
this way, we can replace arithmetic reasoning (that is, rea-
soning about incrementing and decrementing pointers) with
reasoning about adjacency within our logic. The typing rule
for pop is almost identical to that forpush .

Typing selectStack(i) andstoreStack (i) requires
reasoning similar to that forpush : the stack pointer points
at∗.stack .n0 and we can verify that some part of the store is
described by(n0[ ]◦n1[ ]◦· · ·◦ni[ ])@ ∗.stack , allowing
us to conclude that the result of addingi to the stack pointer
would be the path∗.stack .ni.

To type checkselect andstore (which involve ac-
cessing a region other than the stack), ifacc1 points to an
address in regionr, then we must verify that regionr is live
— i.e., we check thatJ(∗.r) = S(live). The rest of the
reasoning for these instructions is similar to that for their



Θ ‖ J � ι : J ′

� v : τ
Θ ‖ J � immed1 (v) : J [∗.acc1 := τ ]

(immed1) � v : τ
Θ ‖ J � immed2 (v) : J [∗.acc2 := τ ]

(immed2)

J(∗.acc1) = τ1 J(∗.acc2) = τ2

Θ ‖ J � swap : J [∗.acc1 := τ2] [∗.acc2 := τ1]
(swap)

J(∗.acc1) = int J(∗.acc2) = int
Θ ‖ J � add : J [∗.acc1 := int]

(add)
J(∗.acc1) = int J(∗.acc2) = int

Θ ‖ J � sub : J [∗.acc1 := int]
(sub)

J(∗.acc1) = τ J(∗.sp) = S(∗.stack .n) J(∗.stack ) = n′[ ] ◦ n[ ]
Θ ‖ J � push : J [∗.sp :=S(∗.stack .n′)] [∗.stack .n′ := τ ]

(push)

J(∗.sp) = S(∗.stack .n′) J(∗.stack ) = n′[τ ] ◦ n[ ]
Θ ‖ J � pop : J [∗.sp :=S(∗.stack .n)] [∗.acc1 := τ ]

(pop)

J(∗.sp) = S(∗.stack .n0) J(∗.stack ) = n0[ ] ◦ n1[ ] ◦ · · · ◦ ni[τ ]
Θ ‖ J � selectStack (i) : J [∗.acc1 := τ ]

(selectStack)

J(∗.sp) = S(∗.stack .n0) J(∗.acc1) = τ J(∗.stack ) = n0[ ] ◦ n1[ ] ◦ · · · ◦ ni[ ]
Θ ‖ J � storeStack (i) : J [∗.stack .ni := τ ]

(storeStack)

J(∗.acc1) = S(∗.r.n0) J(∗.r) = S(live) ⊗ (n0[ ] ◦ n1[ ] ◦ · · · ◦ ni[τ ])
Θ ‖ J � select (i) : J [∗.acc1 := τ ]

(select)

J(∗.acc1) = S(∗.r.n0) J(∗.acc2) = τ J(∗.r) = S(live) ⊗ (n0[ ] ◦ n1[ ] ◦ · · · ◦ ni[ ])
Θ ‖ J � store (i) : J [∗.r.ni := τ ]

(store)

J(∗.sp) = S(∗.stack .ni) J(∗.stack ) = n0[ ] ◦ n1[ ] ◦ · · · ◦ ni[ ]
Θ ‖ J � letRgnFin (i) : J [∗.sp :=S(∗.stack .n0)] [∗.acc1 :=S(∗.stack .n0)]

(letRgnFin)

Θ ‖ J � J ′ J ′ = F1 ⊗ (F2 ◦ (stack [n0[ ] ◦ n1[ ] ◦ n2[τ ]]) ◦ F3) ⊗ sp[S(∗.stack .n2)]@ ∗
Θ ‖ J � letRgnInf : ∃r.F1 ⊗ (F2 ◦ (stack [n0[S(∗.r.start )] ◦ n1[S(∗.r.start)] ◦ n2[τ ]]) ◦ F3)

⊗ sp[S(∗.stack .n0)] ⊗ r[S(live) ⊗ (start [ ] ◦ more→)]@ ∗

(r /∈ FV (J ′))
(letRgnInf)

J(∗.sp) = S(∗.stack .n0) J(∗.r) = S(live)
J(∗.stack ) = n0[S(∗.r.ncurr)] ◦ n1[S(∗.r.start )] ◦ n2[ ]

Θ ‖ J � endRgnInf : J [∗.sp :=S(∗.stack .n2)] [∗.r :=S(dead)]
(endRgnInf)

J(∗.acc1) = S(p) J(p) = S(∗.r.n0) J(∗.r) = S(live) ⊗ (n0[ ] ◦ · · · ◦ ni[ ])
Θ ‖ J � alloc (i) : J [∗.acc1 :=S(∗.r.n1)] [p :=S(∗.r.ni)]

(alloc)

Figure 6. Static Semantic (Instructions)

stack counterparts.

To allocate a finite region of sizei on the stack we sim-
ply verify that that there arei locations to the left of the
current top of the stack and decrement the stack pointer by
i, using fuse to reason about adjacency as in the rule for
selectStack . Registeracc1 is updated with a pointer to
the beginning of the finite region.

We illustrate how some of the above instructions may be
used through an example. The code sequence in Figure 7
storesi values (v0 throughvi−1 of typesτ0 throughτi−1)
on the stack, uses these values in some computationA and
then pops them off the stack. The judgments to the right

of each instruction describe the state of the store after that
instruction has been executed. The annotation “×i” that fol-
lows some instructions indicates that the instruction should
be performedi times.

Allocating a new infinite region is the only operation in
Mini-KAM that involves extending the existing store. This
means that the typing rule forletRgnInf is very differ-
ent from the rules we have considered till now. Figure 8
depicts the situations before and after we allocate an infi-
nite region. When an infinite region is allocated, astart
pointer that points to the beginning of the region and acur-
rent pointer that points to the last allocated cell in the region



Code Describing Judgment
(� ⊗ acc1[ ] ⊗ stack [more← ◦ n[τ ] ◦ F1] ⊗ sp[S(∗.stack .n)])@ ∗

(b-stackgrow) × i (� ⊗ acc1[ ] ⊗ stack [more← ◦ ns ◦ · · · ◦ ns ◦ n[τ ] ◦ F1] ⊗ sp[S(∗.stack .n)])@ ∗
(b-unpack) × i (� ⊗ acc1[ ] ⊗ stack [more← ◦ n0[ ] ◦ · · · ◦ ni−1[ ] ◦ n[τ ] ◦ F1] ⊗ sp[S(∗.stack .n)])@ ∗
letRgnFin (i) (� ⊗ acc1[ ] ⊗ stack [more← ◦ n0[ ] ◦ · · · ◦ ni−1[ ] ◦ n[τ ] ◦ F1] ⊗ sp[S(∗.stack .n0)])@ ∗
immed1 (v0) (� ⊗ acc1[τ0] ⊗ stack [more← ◦ n0[ ] ◦ · · · ◦ ni−1[ ] ◦ n[τ ] ◦ F1] ⊗ sp[S(∗.stack .n0)]) @ ∗
storeStack (0) (� ⊗ acc1[τ0] ⊗ stack [more← ◦ n0[τ0] ◦ · · · ◦ ni−1[ ] ◦ n[τ ] ◦ F1] ⊗ sp[S(∗.stack .n0)])@ ∗

...
...

immed1 (vi−1) (� ⊗ acc1[τi−1] ⊗ stack [more← ◦ n0[τ0] ◦ · · · ◦ ni−2[τi−2] ◦ ni−1[ ] ◦ n[τ ] ◦ F1] ⊗ sp[S(∗.stack .n0)]) @ ∗
storeStack (i − 1) (� ⊗ acc1[τi−1] ⊗ stack [more← ◦ n0[τ0] ◦ · · · ◦ ni−1[τi−1] ◦ n[τ ] ◦ F1] ⊗ sp[S(∗.stack .n0)]) @ ∗
% BEGIN Computation A

...
...

selectStack (j) (� ⊗ acc1[τj ] ⊗ stack [more← ◦ n0[τ0] ◦ · · · ◦ nj [τj ] ◦ · · · ◦ ni−1[τi−1] ◦ n[τ ] ◦ F1] ⊗ sp[S(∗.stack .n0)])@ ∗
(where0 ≤ j < i)

...
...

% END Computation A
pop (� ⊗ acc1[τ0] ⊗ stack [more← ◦ ns ◦ n1[τ1] ◦ · · · ◦ ni−1[τi−1] ◦ n[τ ] ◦ F1] ⊗ sp[S(∗.stack .n1)])@ ∗

...
...

pop (� ⊗ acc1[τi−1] ⊗ stack [more← ◦ ns ◦ · · · ◦ ns ◦ n[τ ] ◦ F1] ⊗ sp[S(∗.stack .n)])@ ∗
(b-stackcut) × i (� ⊗ acc1[τi−1] ⊗ stack [more← ◦ n[τ ] ◦ F1] ⊗ sp[S(∗.stack .n)])@ ∗

Figure 7. Saving Values on the Stack

are added to the top of the stack, so the typing rule must ver-
ify that there exist two locations immediately to the left of
the top of the stack. Operationally, to create the new region
r we add∗.r �→ live to the store to indicate that the region
is live. We also extend the store with the infinite sequence of
adjacent paths∗.r.start , ∗.r.start +1, . . . , mapped to some
initial value, say0. The operational semantics requires that
∗.r and paths of the form∗.r.n (wheren is a name) do not
appear in the domain of the original store. We give a type to
this operation by existentially quantifying the region name
r in the conclusion of the typing rule and by requiring that
r not appear free in the premise. The new portion of the
store is described byr[S(live) ⊗ (start [ ] ◦ more→)] @ ∗
— the judgment describing the transformed state in the typ-
ing rule reflects this extension. This judgment also reflects
the fact that a start pointer (∗.r.start) and a current pointer
(also∗.r.start at this point) are pushed onto the stack and
the stack pointer is decremented by two.

...v--
 n2 n1 n0

stack

sp

...v*.r.start*.r.start

 n2 n1 n0

stack

sp

start
-r

Before LetRgnInf After LetRgnInf

Figure 8. letRgnInf : Before and After

To deallocate an infinite region we must first verify that
the region is live and that the current pointer (∗.r.ncurr) and
start pointer (∗.r.start) for the region are at the top of the
stack. We deallocate regionr by updating the contents of
∗.r with the valuedead and popping the current and start
pointers off the stack.

When we allocate memory in a region we must make
sure that the current pointer for the region (which we saved
on the stack when we created the region) is updated cor-
rectly. As illustrated in Figure 9, thealloc instruction
assumes that registeracc1 contains the address of the lo-
cation where the current pointer is stored. To type check
allocation, if the current pointer points to∗.r.n0, we must
verify that regionr is live, and that there exists a sequence
of i + 1 contiguous locations in regionr starting withn0.
Furthermore, the transformed state should be described by
the initial judgmentJ altered to reflect the fact that the cur-

start
-r -- ...

acc1

*.stack.n0

acc1

    *.r.n1

p  =  *.stack.n0

Before alloc After alloc

...

...*.r.start   *.r.n0stack

sp

...-

 nk

-

 n0  n1

...*.r.start   *.r.nistack

sp

...-

 n0  n1

 n0  n1  ni

 nk

start
-r -- ...... -

 n0  n1  ni

Figure 9. alloc(i) : Before and After



rent pointer on the stack is incremented byi and register
acc1 is updated with a pointer to the beginning of the mem-
ory just allocated.

Soundness. To demonstrate that our language is sound we
have proven standard progress and preservation lemmas.

Theorem 5 (Preservation)
If � (C, s,B) ok and (C, s,B) �−→ (C, s′, B′) then �
(C, s′, B′) ok.

Theorem 6 (Progress)
If � (C, s,B) ok then(C, s,B) �−→ (C, s′, B′).

5 Related Work

Our logic and type system was inspired by a number of
previous efforts to handle explicit memory management in
a safe language. However, as far as we are aware, this is the
first time a logic or type system has been used to describe
a general memory hierarchy. It is also the first time that
the concepts of containment, separation and adjacency have
been combined in a single logic. We break down related
work in terms of these three central concepts.

Containment. Cardelli and Gordon’s ambient logic [3]
was a direct source of inspiration for this work, but our two
logics differ considerably:

• Their logic is classical and is presented as a sequent
calculus whereas our logic is intuitionistic and is given
in natural deduction.

• Their logic contains negation and modal necessity, but
they do not consider adjacency.

• They use processes as a model for their logic whereas
we use a hierarchical store.

• Their semantics for containment formulae differ
slightly from ours. As a result, they may have two
ambients with the same name in the same location
(for instance,m[F ] |m[F ], which is not equivalent
to m[F |F ]), whereas we only ever have one region
with a given name in any location (that is,m[F1] ⊗
m[F2] @ p is equivalent tom[F1 ⊗ F2] @ p).

Recently, Cardelli, Gardner and Ghelli [2] have devel-
oped a related spatial logic for reasoning about trees and
graphs. They have used this logic to develop a query lan-
guage for semi-structured data such as XML or web docu-
ments. Our logic, on the other hand, is intended to be used
in a proof-carrying code system. Once again, there are a
variety of differences between the connectives and the se-
mantics of our two logics.

In the area of memory management, Tofte and Talpin’s
original work on region-based memory management [27]
helped pave the way for this research. Their regions act as
a fixed one-level hierarchy. Our logic extends the idea of
regions to the general case of a multi-level hierarchy. More
recent work on region-based memory management has con-
sidered integration of ideas from linear logic and linear type
systems with regions [29, 5, 31], but no one has considered
regions together with adjacency before and no one has con-
sidered a general memory containment type constructor.

Separation. Immediately after Girard developed linear
logic [7], researchers rushed to investigate computational
interpretations of the logic that take advantage of its sep-
aration properties to safely manage memory [9, 28, 4].
These projects used linear logic or some variant as a
type system for a lambda calculus with explicit allocation
and deallocation of memory. More recently, a new ap-
proach was suggested by Reynolds [23] and Ishtiaq and
O’Hearn [8]. Rather than using a substructural logic to
type lambda terms, they use a logic to describe the shape
of the store. They have focused on using O’Hearn and
Pym’s bunched logic with multiplicatives and additives, but
not ordered or containment connectives. Smith, Walker and
Morrisett [24, 30] have worked out related ideas in a type-
theoretic framework and we borrow their idea of using sin-
gleton types to reason about pointer aliasing.

Adjacency. Morrisett et al. [12] developed an algebra of
lists to reason about adjacent locations on the stack. How-
ever, this discipline is quite inflexible when compared with
our logic and it is impossible to use Morrisett’s stack types
to reason about regions.

Polakow and Pfenning’s ordered linear logic [21, 22, 20]
allows them to reason about the ordering of objects in mem-
ory. Polakow and Pfenning have applied their logic to
the problem of reasoning about continuations allocated and
deallocated on a stack. Petersen et al. [17] further observed
that Polakow and Pfenning’s mobility modality could be in-
terpreted as pointer indirection and their fuse connective
could join two adjacent structs. These observations allow
them to use ordered logic as a type system for a language
with explicit data layout. Petersen et al. do not consider
dependency, which would allow them to reason accurately
about aliasing, or the properties of separation or contain-
ment.

In a related paper [1] we presented a fragment of this
logic with adjacency and separation connectives, but not
containment. We used the logic to provide a type system
for a stack-based assembly language, but were unable to
capture region-based memory management in that system.
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[11] M. Löf. On the meanings of the logical constants and the
justifications of the logical laws. Technical Report 2, Uni-
versity of Siena, 1985.

[12] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based
Typed Assembly Language. InSecond International Work-
shop on Types in Compilation, pages 95–117, Kyoto, Mar.
1998. Published in Xavier Leroy and Atsushi Ohori, editors,
Lecture Notes in Computer Science, volume 1473, pages 28-
52. Springer-Verlag, 1998.

[13] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sys-
tem F to Typed Assembly Language.ACM Transactions on
Programming Languages and Systems, 3(21):528–569, May
1999.

[14] G. Necula. Proof-carrying code. InTwenty-Fourth
ACM Symposium on Principles of Programming Languages,
pages 106–119, Paris, 1997.

[15] G. Necula and P. Lee. Safe kernel extensions without run-
time checking. InProceedings of Operating System Design
and Implementation, pages 229–243, Seattle, Oct. 1996.

[16] P. O’Hearn and D. Pym. The logic of bunched implications.
Bulletin of Symbolic Logic, 5(2):215–244, 1999.

[17] L. Petersen, R. Harper, K. Crary, and F. Pfenning. A type
theory for memory allocation and data layout. InACM
Symposium on Principles of Programming Languages, Jan.
2003. To appear.

[18] F. Pfenning. Logical frameworks. In A. Robinson and
A. Voronkov, editors,Handbook of Automated Reasoning,
chapter 16, pages 977–1061. Elsevier Science and MIT
Press, 2001.

[19] F. Pfenning and R. Davies. A judgmental reconstruction of
modal logic.Mathematical Structures in Computer Science,
11:511–540, 2001.

[20] J. Polakow. Ordered Linear Logic and Applications. PhD
thesis, Carnegie Mellon University, 2001. Available As
Technical Report CMU-CS-01-152.

[21] J. Polakow and F. Pfenning. Natural deduction for intuition-
istic non-commutative linear logic. In J.-Y. Girard, editor,
Typed Lambda Calculi and Applications, volume 1581 of
Lecture Notes in Computer Science, pages 295–309, Berlin,
1999. Springer-Verlag.

[22] J. Polakow and F. Pfenning. Relating natural deduction and
sequent calculus for intuitionistic non-commutative linear
logic. Electronic Notes in Theoretical Computer Science,
20, 1999.

[23] J. C. Reynolds. Intuitionistic reasoning about shared muta-
ble data structure. InMillennial perspectives in computer
science, Palgrove, 2000.

[24] F. Smith, D. Walker, and G. Morrisett. Alias types. InEuro-
pean Symposium on Programming, pages 366–381, Berlin,
Mar. 2000.

[25] Standard ECMA-335: Common Language Infrastructure
(CLI), Dec. 2001. http://www.ecma.ch.

[26] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. H. Ole-
sen, P. Sestoft, and P. Bertelsen. Programming with regions
in the ML Kit (for version 3). Technical Report 98/25, Com-
puter Science Department, University of Copenhagen, 1998.

[27] M. Tofte and J.-P. Talpin. Region-based memory man-
agement. Information and Computation, 132(2):109–176,
1997.

[28] P. Wadler. Linear types can change the world! In M. Broy
and C. Jones, editors,Progarmming Concepts and Methods,
Sea of Galilee, Israel, Apr. 1990. North Holland. IFIP TC 2
Working Conference.

[29] D. Walker, K. Crary, and G. Morrisett. Typed memory man-
agement in a calculus of capabilities.ACM Transactions on
Programming Languages and Systems, 22(4):701–771, May
2000.

[30] D. Walker and G. Morrisett. Alias types for recursive data
structures. InWorkshop on Types in Compilation, Montreal,
Sept. 2000.

[31] D. Walker and K. Watkins. On linear types and regions.
In ACM International Conference on Functional Program-
ming, Florence, Sept. 2001. ACM Press.


